Dynamics and mergers of primordial black holes in a cluster

Viktor Stasenko

NRNU MEPhI

2021

Introduction

The idea of the PBHs formation was proposed by Zel'dovich and $\mathsf{Novikov}^1.$

Some astrophysical effects can be attributed to PBHs:

- ▶ PBHs form a part of the Dark Matter².
- ► Early structure formation³.
- Supermassive black holes at large redshift⁴ z > 7.
- ► Gravitational waves⁵.

¹Sov. Astron. 10 (1967) 602

²Annu. Rev. Nucl. Part. Sci. 70 (2020) 355-394

³Phys. Rev. D. 100 (2019) 083528

⁴Nature 553 (2018) 473-476

⁵Phys. Rev. Lett. 116 (2016) 201301

Introduction

This work studies the dynamics of PBHs cluster⁶ and estimates the merger rate of black hole in the cluster \rightarrow restriction on the PBHs clusters.

Formation redshift $z_f = 10^4$. Condition of detachment from expansion of the Universe $\delta \rho / \rho \sim 1$ $\rightarrow \langle \rho_{cl} \rangle \sim \rho_{DM}(z_f) \sim 10^4 M_{\odot} \text{ pc}^{-3} \rightarrow R_{cl} = 1 \text{ pc}, M_{cl} = 10^5 M_{\odot}$.

Fraction of the cluster⁷ $\Omega_{cl}/\Omega_{DM} \lesssim 0.05 \rightarrow$ formation of the dark matter halo around PBHs cluster⁸ $\rho_H \propto r^{-9/4}$.

⁶Astropart. Phys. 23 (2005) 265-277
 ⁷Phys. Rev. Lett. 123 (2019) 071102
 ⁸Astrophys. J. Suppl. 58 (1985) 39-65

Equations

The Fokker-Planck equation⁹:

$$\frac{\partial N}{\partial t} = -\frac{\partial}{\partial E} \left(N \langle \Delta E \rangle \right) + \frac{1}{2} \frac{\partial^2}{\partial E^2} \left(N \langle (\Delta E)^2 \rangle \right) - \nu_{lc} N, \quad (1)$$

 $N = 4\pi^2 p(E) f(E)$ is $\nu_{lc} N$ — the lose cone term¹⁰, which describes the capture of PBHs by the central massive BH.

The gravitational potential:

$$\phi(r) = -4\pi G \left[\frac{1}{r} \int_0^r dr' r'^2 \rho(r') + \int_r^\infty dr' r' \rho(r') \right], \qquad (2)$$

the density profile:

$$\rho(r) = 4\pi \sum_{i} m_{i} \int_{\phi(r)}^{0} dE \sqrt{2(E - \phi(r))} f_{i}(E).$$
 (3)

⁹Astrophys. J. 848 (2017) 10

¹⁰Class. Quantum Grav. 30 (2013) 244005

The merger rate

The cross-section of binary black hole formation (direct channel)¹¹:

$$\sigma = 2\pi \left(\frac{85\pi}{6\sqrt{2}}\right)^{2/7} \frac{G^2 (m_i + m_j)^{10/7} m^{2/7} m'^{2/7}}{c^{10/7} v_{rel}^{18/7}},$$
 (4)

 m_i is m_j — masses of merging black holes, v_{rel} — relative velocity of these BHs.

The merger rate of PBHs with masses m_i and m_j

$$\Gamma_{i,j} = \int dV \, n_i n_j \langle \sigma v_{rel} \rangle, \qquad (5)$$

where n_i is the number density of PBHs with mass m_i .

¹¹Astrophys J. Lett. 566 (2002) L17

Initial data

The density profile of PBHs:

$$\rho_i(r) = \rho_0 \left(\frac{r}{r_0}\right)^{-1} \left[1 + \left(\frac{r}{r_0}\right)^2\right]^{-2}, \qquad (6)$$

the density profile of dark matter:

$$\rho_{DM} = \rho_{0,DM} \left(1 + \frac{r}{r_0} \right)^{-9/4},$$
(7)

 $\rho_{0,DM} = \rho_{DM}(z = 10^4) = 10^4 M_{\odot} \text{ pc}^{-3}, r_0 = 1 \text{ pc}, M_{cl} = 10^5 M_{\odot}$ The mass spectrum of PBHs¹²:

$$\frac{dN}{dm} \propto \frac{1}{M_{\odot}} \left(\frac{m}{M_{\odot}}\right)^{-2} \Big|_{0.01 M_{\odot}}^{10 M_{\odot}}, \quad M_{\bullet} = 100 M_{\odot}.$$
(8)

¹²Eur. Phys. J. C 79 (2019) 246

The evolution of mass distribution

Рис. 1 — Left: the total mass distribution of PBHs for different times. Dots are radii containing M_{\bullet} mass, crosses are half mass radii r_h . Right: the evolution of half mass radii for different type of PBHs

$$r^2
ho(r) \propto rac{dM(r)}{dr}$$
, $ho \propto r^{-7/4}$ is the Bahcall-Wolf cusp 13

¹³Astrophys. J. 209 (1976) 214

The evolution of mass distribution

Puc. 2 — The evolution of mass shells. Left: calculations both with and without a halo. Right: calculations with mass spectrum(8) and monochromatic mass spectrum $m = 10 M_{\odot}$

The grow of the central BH mass

Рис. 3 — Left: The merger rate of black holes with $10 M_{\odot}$ mass and central BH. Right: time dependence of the central BH mass

The merger rate evolution

Рис. 4 — The merger rate of PBHs with mass 10 M_{\odot} depending on the time

LIGO/Virgo¹⁴: $\Gamma_V \sim 100 \text{ yr}^{-1} \text{ Gpc}^{-3} \rightarrow \Omega_{\it cl}/\Omega_{\it DM} \lesssim 0.01.$

¹⁴Phys. Rev. Lett. 118 (2017) 221101

Conclusion

The dynamic of PBHs cluster is studied.

- Taking into account the dark matter halo slows down the cluster expansion rate.
- The modern cluster size is $r_h \sim 3$ pc.
- The mass of the central BH increases to \sim 400 M_{\odot} .
- ► The merger rate of PBHs imposes restriction on the abundance of the clusters $\Omega_{cl}/\Omega_{DM} \lesssim 0.01$.